An Anticonvulsant and Mood Stabilizer

Carbamazepine (CBZ), an anticonvulsant and mood stabilizer, is ubiquitous distributed in aquatic environment. Though the toxicity and endocrine disrupting effect of CBZ on non-target organisms have been studied, its lipotoxity are scarcely known. To assess the lipotoxicity of CBZ, 2-month-old Chinese rare minnow were exposed to 0, 1, 10, and 100 μg/L CBZ for 90 d. Obvious dyslipidemia was observed after 30 d and 90 d exposure, whereas overt hyperlipidemia was observed in males at 100 μg/L treatments. Severe lipid droplet accumulation in livers was observed at 10 and 100 μg/L treatments for 30 d and in females, whereas those was observed at all treatments in males.
In addition, serious mitochondria damage was observed in males at 100 μg/L treatments. After 90 d exposure, the enzyme activities of FAS and ACCα were significantly increased at 10 and 100 μg/L treatments, whereas HMGCR were markedly increased at 100 μg/L treatments (p < 0.05). However, ACCβ were markedly decreased in females at 10 and 100 μg/L treatments and in males at all treatments (p < 0.05). The transcription levels of fasn, accα, hmgcrα, fdft1, idi1, plin1, plin2, caveolin1, and caveolin2 were significantly increased at 100 μg/L treatments (p < 0.05). Moreover, the body weight was obviously increased at 10 and 100 μg/L treatments in males (p < 0.05). Our results confirmed that environmental relevant concentrations CBZ induced lipid metabolism disorder and mitochondria damage of Chinese rare minnow in a gender-specific pattern, which provided a new insight into the lipotoxicity mechanism of CBZ.
Visit for more related articles at Rare Disorders: Diagnosis & Therapy
Kindly submit your article through Editorial Tracking or through raredisord@emedicalscience.com
With Regards
Sofia
Journal Co-ordinator
Journal of Rare Disorders: Diagnosis & Therapy