BPA Exposure on Ovulatory, Hormonal, Mitochondrial Dysfunction
Description
Biphenyl A (BPA) mimics estrogen and consequently suspected to be detrimental to female reproductive system. Bio monitoring confirms the BPA burden in body leading to a complex condition called polycystic ovarian syndrome (PCOS) which is frequently attributed to female infertility. Due to unclear precise molecular path mechanisms of BPA in PCOS, we intend to examine the molecular mechanisms of the reproductive, endocrine, mitochondrial features, and cellular senescence in BPA-treated rats. We analyzed vaginal smears and ovarian follicles using microscope, assessed sex hormones by ELISA, analyzed BPA target gene expression by semi-quantitative RT-PCR, assessed senescence induction by β-galactosidase staining and immunofluorescence in BPA-treated rats. Our data showed hormonal imbalance, impaired folliculogenesis, abnormal expression patterns of target genes, CDKN2A overexpression and enhanced ROS levels in BPA-treated rats. This study provides insights on the effects of BPA exposure on ovulatory, hormonal, mitochondrial dysfunction, and senescence that benefit in better understanding of PCOS induced by BPA.
Follicular fluid is the microenvironment of oocytes that plays a crucial role in oocyte development. This study intended to explore the follicular fluid metabolomics in diminished ovarian reserve (DOR), polycystic ovarian syndrome (PCOS), and normal ovary response (NOR) groups. For metabolomic analysis, we collected the follicular fluid samples from 28 patients with DOR, 28 patients with NOR, and 28 patients with PCOS. The identified metabolites were annotated using KEGG to determine the metabolic pathway disturbances in PCOS and DOR. Based on the regression model, we conducted ROC analysis to identify PCOS and DOR biomarkers in the follicular fluid. The present results identified that the DOR and NOR groups' differential metabolites were primarily enriched in the choline pathway. The concentrations of pregnanediol-3-glucuronide and 2-hydroxyestrone sulfate in the DOR and NOR groups were substantially different. The metabolites in the purine metabolism pathway were mainly enriched in the PCOS and NOR groups. N-Acetyl-S-(N-methylcarbamoyl) cysteine and 3,4-dehydrothiomorpholine in the PCOS and NOR groups were substantially different. We also identified metabolic alterations in PCOS and DOR follicular fluid, which provides novel ways for PCOS and DOR diagnosis and therapy.
Kindly submit your manuscript through https://www.imedpub.com/submissions/reproductive-endocrinology-infertility.html
With Regards
Manisha
Journal Coordinator
Journal of Reproductive Endocrinology & Infertility