Cancer therapy using nanogels

Chemotherapy is the treatment of choice in cancer therapy even though anti-tumor agents cause frequent and harmful effects on organs and tissues. Nanogels can efficiently improve cancer therapy by increasing the antineoplastic concentration in tumor sites and acting on cancer cells for prolonged periods without significantly affecting normal tissues. In this research, a pH-responsive Polyvinylpyrrolidone (PVP)-based nanogel for the controlled release of 5-Fluorouracil (5-FU) was developed. Nanogels were synthesized using γ-radiation, and 5-FU was loaded into nanogels by physical entrapment. These formulations were characterized by spectroscopy techniques, electronic microscopy, and light scattering measurements. Drug loading and release from nanogels are strongly influenced by %PVP and irradiation dose. Simulations showed a higher drug-polymer affinity at low pH according to experimental loading values (encapsulation efficiency = 17% and drug loading = 83%). The sustained release profile responds to pH change from 1.2 to 7.4, increasing the release rate in acid conditions. Furthermore, nanogels have a negative surface charge, spherical morphology, and diameter of 41.0 ± 0.9 nm. These properties show its potential as a nanocarrier of 5-FU for cancer treatment.
In therapeutic cancer vaccines, vaccine antigens must be efficiently delivered to the antigen-presenting cells (dendritic cells and macrophages) located in the lymphoid organs (lymph nodes and spleen) at the appropriate time to induce a potent antitumor immune response. Nanoparticle-based delivery systems in cancer immunotherapy are of great interest in recent year. We have developed a novel cancer vaccine that can use self-assembled polysaccharide nanogel of cholesteryl group-modified pullulan (CHP) as an antigen delivery system for clinical cancer immunotherapy for the first time. Additionally, we recently proposed a novel technology that uses CHP nanogels to regulate the function of tumor-associated macrophages, leading to an improvement in the tumor microenvironment. When combined with other immunotherapies, macrophage function modulation using CHP nanogels demonstrated a potent inhibitory effect against cancers resistant to immune checkpoint inhibition therapies. In this review, we discuss the applications of our unique drug nanodelivery system for CHP nanogels.
Visit for more related articles at Nano Research and Applications
Kindly submit your article through Editorial Tracking or through editor.nanoresearch@jpeerreview.com
With Regards
Jenny
Journal Co-ordinator
Journal of Nano Research & Applications