Explosive Growth of Descriptive and Generative Models of Animal Behavior

Image
Description

Neural computation has evolved to optimize the behaviors that enable our survival. Although much previous work in neuroscience has focused on constrained task behaviors, recent advances in computer vision are fueling a trend toward the study of naturalistic behaviors. Automated tracking of fine-scale behaviors is generating rich datasets for animal models including rodents, fruit flies, zebrafish, and worms. However, extracting meaning from these large and complex data often requires sophisticated computational techniques. Here we review the latest methods and modeling approaches providing new insights into the brain from behavior. We focus on unsupervised methods for identifying stereotyped behaviors and for resolving details of the structure and dynamics of behavioral sequences.

In the past few years, advances in machine learning have fueled an explosive growth of descriptive and generative models of animal behavior. These new approaches offer higher levels of detail and granularity than has previously been possible, allowing for fine-grained segmentation of animals' actions and precise quantitative mappings between an animal's sensory environment and its behavior. How can these new methods help us understand the governing principles shaping complex and naturalistic behavior? In this review, we will recap ways in which our ability to detect and model behavior have improved in recent years, and consider how these techniques might be used to revisit classical normative theories of behavioral control. Clinical research and studies using animal models have revealed a complex and relatively under-explored interaction between prenatal alcohol exposure (PAE) and alterations in sleep-wake behaviors.

Kindly submit your manuscript through https://www.imedpub.com/submissions/annals-behavioural-science.html
With Regards
Anisa

Journal Coordinator
Journal of Annals of Behavioural Science