Krebs Cycle is an Amphibolic Pathway operating in the Mitochondrial Matrix of all Eukaryotic Organisms

Image
Description:

The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production.

Aluminum is a neurotoxic agent for animals and humans that has been implicated as an etiological factor in several neurodegenerative diseases and as a destabilizer of cell membranes. Due to its high reactivity, Al3+ is able to interfere with several biological functions, including enzymatic activities in key metabolic pathways. In this paper we report that, among the enzymes that constitute the Krebs cycle, only two are activated by aluminum: α-ketoglutarate dehydrogenase and succinate dehydrogenase. In contrast, aconitase, shows decreased activity in the presence of the metal ion. Al3+ also inhibits glutamate dehydrogenase, an allosteric enzyme that is closely linked to the Krebs cycle. A possible correlation between aluminum, the Krebs cycle and aging processes is discussed.

Aluminum is a neurotoxic agent for animals and humans that has been implicated as an etiological factor in several neurodegenerative diseases and as a destabilizer of cell membranes. Due to its high reactivity, Al3+ is able to interfere with several biological functions, including enzymatic activities in key metabolic pathways. In this paper we report that, among the enzymes that constitute the Krebs cycle, only two are activated by aluminum: α-ketoglutarate dehydrogenase and succinate dehydrogenase. In contrast, aconitase, shows decreased activity in the presence of the metal ion. Al3+ also inhibits glutamate dehydrogenase, an allosteric enzyme that is closely linked to the Krebs cycle. A possible correlation between aluminum, the Krebs cycle and aging processes is discussed.

With Regards
jhosfin
Journal Coordinator
Global Journal of Research and Review