Nanopore Sensing Strategy

Image

Ultrathin nanopore membrane is an emerging energy harvesting system capable of generating electricity from salinity gradients. Here, we report on the evaluation of its practical feasibility by exploring the energy conversion efficiency of single to densely packed multi-pores in a thin silicon nitride. The ionic current characteristics of single pores reveal a quasi-perfect cation selectivity when shrinking the diameter to 20 nm. The perm-selective nanopore is shown to yield osmotic power of 160 pW under a 1,000-fold transmembrane salt concentration difference. Meanwhile, whereas larger energy is gained by parallelly integrating multiple pores, excessive porosity also led to degraded energy conversion efficiency, thereby demonstrating an optimal power density of 100 W per square meter for 100 nm-sized multi-nanopores with a grid spacing of 1 μm. The present findings offer a guide to design highly efficient nanopore membrane osmotic power generators.

A novel detection technique for tumor marker carcinoembryonic antigen (CEA) has been developed by using a solid-state nanopore as a tool. The system utilizes the specific affinity between aptamer-modified magnetic Fe3O4 and CEA, rather than directly detecting the translocation of CEA through the nanopore. The aptamer-modified magnetic Fe3O4 was hybridized with tetrahedral DNA nanostructures (TDNs), and TDNs were released after CEA was added. We investigate the translocation behavior of individual TDNs through solid-state nanopores. The frequency of the blockage signals for TDNs is recorded for indirect detection of CEA. We realized the detection of CEA with a concentration as low as 0.1 nM and proved the specificity of the interaction between the aptamer. In addition, our designed nanopore sensing strategy can detect CEA in real samples.

Visit for more related articles at Nano Research and Applications

Kindly submit your article through Editorial Tracking or through editor.nanoresearch@jpeerreview.com

With Regards
Jenny
Journal Co-ordinator
Journal of Nano Research & Applications