Neurodegenerative Features Associated With Human Radiosensitive Syndromes

Image
Description

Adult stem cells are responsible for homoeostasis and regeneration of epithelial tissues. Stem cell function is regulated by both cell autonomous mechanisms as well as the niche. Deregulated stem cell function contributes to diseases such as cancer. Epithelial organoid cultures generated from tissue-resident adult stem cells have allowed unprecedented insights into the biology of epithelial tissues. The subsequent adaptation of organoid technology enabled the modeling of the communication of stem cells with their cellular and non-cellular niche as well as diseases. Starting from its first model described in 2009, the murine small intestinal organoid, we discuss here how epithelial organoid cultures have been become a prime in vitro research tool for cell and developmental biology, bioengineering, and biomedicine in the last decade.

Findings of neurodegenerative features associated with human radiosensitive syndromes such as Ataxia telangiectasia suggest that DNA repair efficiency is crucial for maintaining the functional integrity of central nervous system. To gain a better understanding of ionizing radiation (IR) induced DNA damage response in undifferentiated and differentiated neural cell types and to evaluate the role of ATM in DNA double strand break (DSB) repair, an in vitro human neural cell differentiation model system was utilized in this study. As compared to adult stem cells, differentiated neurons displayed an attenuated DSB repair response (as judged by the persistence of 53BP1 foci) after IR exposure and the attenuation was even more pronounced in stem cells and neurons after suppression of ATM (Ataxia Telangiectasia Mutated) gene product suggesting the importance of ATM for an optimal DSB repair efficiency in human neural cell types. In corroboration with an attenuated DNA damage response, a sharp decline in the expression levels of several DSB repair genes was observed in neurons. Our results suggest that cellular differentiation modulates the expression of several genes thereby compromising the DSB repair fidelity in post mitotic neurons. Further studies are required to verify whether or not ATM mediated exacerbation of DNA repair deficiency in differentiated neurons leads to neurodegeneration a cis-regulatory genetic element which targets gene expression to stem cells, termed stem cell enhancer, serves as a molecular handle for stem cell-specific genetic engineering. Here we show the generation and characterization of a tamoxifen-inducible CreERT2 transgenic (Tg) mouse employing previously identified hematopoietic stem cell (HSC) enhancer for Runx1, eR1 (+24 m).

kindly submit your article through https://reproductive-endocrinology-infertility.imedpub.com/archive.php 

With Regards
David
Journal Coordinator
Journal of Reproductive Endocrinology & Infertility