Oxygen Supplementation in Conditions of Respiratory Failure aims to Overcome Hypoxemia

Description:
Management of respiratory failure is closely related to oxygen supplementation. Thus, its administration needed special attention according to indications to avoid the toxic effect. Oxygen supplementation in conditions of respiratory failure aims to overcome hypoxemia. Excessive oxygen exposure can cause oxygen toxicity and lead to hyperoxia. Hyperoxia is a condition in which there is an excess supply of oxygen in the tissues and organs. Clinically, respiratory failure is diagnosed if the PaO2 is less than 60 mmHg with or without an increase in carbon dioxide when the patient breathes room air. Respiratory failure is divided into acute (sudden) respiratory failure and chronic (slow) respiratory failure. The basis for managing respiratory failure consists of supportive/non-specific and causative/specific management. Oxygen should be prescribed wisely not to cause injury to organs such as the heart, lungs, eyes, nervous system, and others. Hyperoxia often occurs in managing respiratory failure, so it requires supervision, especially in administering oxygen. Oxygen should be given as needed to avoid hyperoxia. In oxygen therapy, it is necessary to pay attention to the patient's condition because each condition requires different oxygen concentrations, so dose adjustments are necessary. These conditions can be divided into critical, severe, and observation conditions. The target oxygen saturation in all these conditions is 94–98%. We encountered a case of sudden respiratory failure during treatment of catatonia that required intensive care. Electroconvulsive therapy (ECT) was administered in the intensive care unit while the patient was under systemic control. The catatonia symptom was relieved, and respiratory failure improved. Although a proximal venous thrombus was observed, anticoagulation therapy was continued during ECT, and the patient was successfully treated without causing a pulmonary embolism. It is crucial to monitor the patient's physical and psychological symptoms because respiratory status may deteriorate rapidly in a catatonic state.
Although standard oxygen face masks are first-line therapy for patients with acute hypoxemic respiratory failure, high-flow nasal cannula oxygen therapy has gained major popularity in intensive care units. The physiological effects of high-flow oxygen counterbalance the physiological consequences of acute hypoxemic respiratory failure by lessening the deleterious effects of intense and prolonged inspiratory efforts generated by patients. Its simplicity of application for physicians and nurses and its comfort for patients are other arguments for its use in this setting. Although clinical studies have reported a decreased risk of intubation with high-flow oxygen compared with standard oxygen, its survival benefit is uncertain. A more precise definition of acute hypoxemic respiratory failure, including a classification of severity based on oxygenation levels, is needed to better compare the efficiencies of different non-invasive oxygenation support methods (standard oxygen, high-flow oxygen, and non-invasive ventilation). Additionally, the respective role of each non-invasive oxygenation support method needs to be established through further clinical trials in acute hypoxemic respiratory failure, especially in severe forms.
With Regards
Rasihan
Journal Coordinator
Global Journal of Research and Review