Power of Human Cellular Models of Environmental Pollution

Image
Description

Plastic pollution is increasing at an alarming rate yet the impact of this pollution on human health is poorly understood. Because human induced pluripotent stem cells (hiPSC) are frequently derived from dermal fibroblasts, these cells offer a powerful platform for the identification of molecular biomarkers of environmental pollution in human cells. Here, we describe a novel proof-of-concept for deriving hiPSC from human dermal fibroblasts deliberately exposed to polystyrene (PS) Nano plastic particles; unexposed hiPSC served as controls.

In parallel, unexposed hiPSC were exposed to low and high concentrations of PS nanoparticles. Transcriptomic and epigenomic signatures of all fibroblasts and hiPSCs were defined using RNA-seq and whole genome methyl-seq, respectively. Both PS-treated fibroblasts and derived hiPSC showed alterations in expression of ESRRB and HNF1A genes and circuits involved in the pluripotency of stem cells, as well as in pathways involved in cancer, inflammatory disorders, gluconeogenesis, carbohydrate metabolism, innate immunity, and dopaminergic synapse. Similarly, the expression levels of identified key transcriptional and DNA methylation changes (DNMT3A, ESSRB, FAM133CP, HNF1A, SEPTIN7P8, and TTC34) were significantly affected in both PS-exposed fibroblasts and hiPSC. This study illustrates the power of human cellular models of environmental pollution to narrow down and prioritize the list of candidate molecular biomarkers of environmental pollution. This knowledge will facilitate the deciphering of the origins of environmental diseases. NANOG, as a transcription factor, plays a key role in maintaining pluripotency in higher vertebrates. Thus, NANOG gene expression is a critical index for the transition from somatic cells to the pluripotent stage. Here, we established chicken knock-in DF1 cells in which the red fluorescent protein (RFP) gene was specifically inserted into the transcriptional start site of the NANOG gene through the CRISPR‒Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9) technical platform. Subsequently, 4 transcription factors (Pou5f3, Sox2, Nanog, and Lin28A) were introduced into the NANOG-RFP DF1 cells, and finally, the induced pluripotent cells were established and examined by endogenous NANOG promoter-controlled RFP gene expression. The development of induced pluripotent stem cells (iPSCs) in avians would be useful for practical applications in the field of avian biotechnology, including biobanking genetic materials and restoring endangered species. In this study, a reporter cell line system was established to efficiently identify the induced pluripotent stage, and it will facilitate potential use for various purposes in the field of avian experimental models.

Kindly submit your manuscript through https://www.imedpub.com/submissions/reproductive-endocrinology-infertility.html

With Regards
Ellison
Journal Coordinator
Journal of Reproductive Endocrinology & Infertility